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Abstract 
Background: Incontinence-associated dermatitis (IAD) develops from prolonged exposure of skin to 
urine and/or stool and represents a common complication in older adults, reducing the quality of life. 
Increased pH is an important etiologic factor of IAD, however, the relationship between urinary pH 
and skin barrier disruption remains unclear.  
Objective: To examine the effects of synthetic urine (s-urine) at various pH on transepidermal water 
loss (TEWL), stratum corneum hydration (SCH) and skin surface pH. 
Methods: S-urine solutions (pH 5.0-9.0) were applied to the volar forearms of 15 healthy participants 
for 2 hrs, with another site serving as the untreated control. Measurements of TEWL, SCH and skin 
surface pH were obtained at baseline and after each challenge. Skin buffering capacity was also 
examined in 5 volunteers by recording skin pH at baseline, after 2 hrs exposure and every 5 mins for 
40 mins.  
Results: TEWL and SCH were increased following exposure to s-urine compared to baseline values. 
Although there was tendency for pH to an increase after exposure, further investigation showed that 
changes are only temporal as pH value is restored to baseline within 5 mins. There were no 
significant differences between solutions.  
Conclusions: This study revealed that urine disrupts healthy skin integrity; however, its effects are 
not pH dependent. Transient changes were observed on the acid mantle of the skin due to its innate 
buffering capacity. Future studies need to examine the effects of urine combined with bacteria 
responsible for pH elevation in patients with urinary incontinence.  
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Introduction 
Incontinence-associated dermatitis (IAD) is classified by the ICD-11 [1] as a form of irritant contact 
dermatitis caused by the prolonged exposure of the skin to urine, faeces or both, and represents a 
common complication in adults with incontinence [2,3]. The initial clinical signs of IAD include 
persistent erythema and inflammation at the skin surface, and if left untreated, can lead to oedema, 
swelling and blister formation [2]. Affected individuals may experience pain, discomfort, burning, and 
itching, that ultimately reduce the quality of life, and are also at increased risk of developing pressure 
injuries [4,5]. Prevalence and incidence of IAD vary depending on the care setting, with higher rates 
commonly seen in acute care settings (19-45.7%) [4,6–8] than in long-term care facilities (4.3-8.4%) 
[6,9,10] with corresponding incidence rates of 5.2-46.1% [4,6,8,9,11] and 3.4-25%, respectively [12–
14]. 
The physical barrier of the skin resides in the stratum corneum (SC) with the important functions of 
cohesion, homeostasis, the regulation of water diffusion, a process associated with transepidermal 
water loss (TEWL) [15], and the protection of the body from various insults, involving  microbes and 
UV light [16]. The acidic pH of the skin surface, known as the acid mantle [17], is a critical regulator of 
SC function [18] and any alterations in pH will impair the barrier, enhance the penetration of 
substances, inhibit normal skin microbiota, and promote the growth of pathogens [19–21]. By 
exhibiting a pH between 4 and 6, the skin surface provides an optimum environment for the activity 
of key enzymes involved in desquamation and ceramide synthesis, such as serine proteases and β-
glucocerebrosidase, for the formation of lamellar bilayers, which are critical for skin permeability, 
and for the recovery rate of the barrier function in pathogenic conditions [21–27]. Therefore, TEWL, 
hydration of the SC (SCH), and skin’s acidity are important physiological properties for the 
maintenance of skin integrity and consequently high values of these parameters are associated with 
an impaired barrier [15,28]. 
In incontinent patients, exposure to urine for extensive periods of time macerates the skin, leading to 
an overhydrated epidermis, swelling of corneocytes in the SC, barrier disruption and enhanced 
upregulation of pro-inflammatory cytokines [29–31]. The damage is aggravated in the presence of 
urease-producing bacteria from the perineum or the nearby urinary tract that convert urea in urine 
into ammonia. This converts skin pH to alkaline levels which can activate lipolytic and proteolytic 
enzymes from the gut and excreted in faeces [32–34]. Elevated surface pH, in turn, increases skin 
permeability thus irritating the effects of incontinence [35] and promoting microbial growth and IAD 
development [36,37]. Indeed, previous studies have reported that even short-term exposure to 
alkaline urine, results in erythema, with an associated increase in TEWL, SCH and skin pH, and an 
eventual compromise to skin barrier functionality [38,39]. In particular, an increase in urinary pH was 
associated with more severe disruption of barrier function [39]. However, previous studies 
investigating this, employed alkaline urinary values (pH 7.9-10.7), which are beyond those of 
biological urine ranging from pH 4.5 to pH 8.0 [40,41], depending on several factors, including diet 
and the presence of infection [40,42]. As a consequence, the exact relationship between urinary pH 
and disruption of skin integrity is still unknown. The present study examined the effects of synthetic 
urine (s-urine) at various pH values of physiological relevance on biophysical parameters 
characterizing healthy skin integrity.  
Methods 
Study design and setting 
This study represents an exploratory study approved by the ethics committee of University of 
Southampton (approval number 9349) and conducted within a bioengineering laboratory under 
controlled temperature (22°C ± 3°C) and humidity (40-45%) conditions, as these influence 
measurements [43–47]. Although this did not represent a randomized control trial, we adhered to 
the CONSORT statement guidelines for the reporting of this study [48]. 
Participants 
Previously published data using the measures of skin barrier function suggested that a change of 25% 
was detectable using 15 subjects with 80% power and significance at a significance level of 5% [49]. 
The inclusion criteria for recruiting participants were: 1) aged 18-65 years, 2) no active skin disease 
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and 3) no previous history of skin diseases. Exclusion criteria included pregnancy, pre-existing 
medical condition that is known to affect the dermal vasculature (e.g., diabetes mellitus), treatment 
with any vasoactive medication (e.g., beta-blockers, non-steroidal anti-inflammatory drugs; steroids), 
pre-existing dermatological condition and inability to give informed written consent. Participation 
was voluntary and no incentives were provided. Participants were asked to refrain from applying any 
cosmetic products to the forearms for 12 hrs before the study, to avoid influence on biophysical 
measurements [46,50]. Informed consent was obtained from the participants upon arrival to the 
laboratory and after the details of the procedures had been fully explained. All study procedures 
complied with the principles outlined in the Helsinki Declaration and participants were left to 
acclimatize to the ambient conditions for 30 mins prior to testing.  
Synthetic human urine (S-urine) 
To simulate the moisture irritant source experienced by patients with urinary incontinence, s-urine 
(pH of 7.9) was used as previously described [51]. In brief, 25g urea (Fisher Scientific, UK), 9g sodium 
chloride (Sigma Aldrich, UK), 3g ammonium chloride (Fisher Scientific, UK), 3g sodium sulphite (Fisher 
Scientific, UK), 2.5g anhydrous disodium hydrogen orthophosphate (Fisher Scientific, UK), and 2g 
creatinine (Across Organics, Geel, Belgium) were dissolved in 1L of distilled water and kept at 4°C. S-
urine pH was adjusted to values from 5.0 and 9.0 with 1M hydrochloric acid and 1M ammonium 
hydroxide.  
Skin integrity assessment  
Skin integrity was evaluated using non-invasive biophysical measurement techniques. TEWL was 
quantified using the open-chamber Tewameter® TM 300 (Courage & Khazaka Electronic GmbH, 
Cologne, Germany), and a metal stand was used to hold the probe horizontally to maintain a 
constant applied pressure on the skin to reduce movement artefacts [52]. It is accepted that there is 
no optimum TEWL value for healthy skin and that there is considerable heterogeneity among studies. 
However, in one study using the open-chamber method, for individuals under 65 years old, low 
values of TEWL (≤10 g/h/m2) were reported for the volar forearm [15]. By contrast, SCH values as 
determined using capacitance principles are generally characterized into three skin types depending 
on whether they are very dry i.e., <30 arbitrary units (AUs), dry 30-40 AUs or normal moist well-
hydrated skin i.e., >40 AUs [53]. Typical skin surface pH has been reported to be within 4.5-5.0 in the 
forearm region, although variation is evident even across the same anatomical region [54]. All 
measurement probes were part of the Multiprobe Adapter MPA9 system (Courage & Khazaka 
Electronic GmbH, Cologne, Germany). 
Study procedures  
Participants attended the laboratory on two separate study visits, two weeks apart. All tests were 
performed on the volar aspect of both forearms as it represents an easily accessible site commonly 
used in dermatological research, thus facilitating comparison with other studies. At the main study 
visit, baseline measurements of TEWL and skin surface pH were taken on six areas (20mmx20mm, 
three in each forearm) at contralateral locations. Each test area was separated by a distance of 40 
mm, determined using a ruler (Fig. 1a). Then, the different s-urine solutions were applied on five 
sites using HillTop chambers (25mm, HillTop Research Inc., Saint Petersburg, Florida), saturated with 
500μl s-urine, and secured in place with transpore adhesive tape (3M, Minneapolis, Minnesota). The 
remaining site served as the untreated control, as illustrated in Figure 1b. The order of s-urine 
solutions was randomized among participants using a Latin square. After a 2-hour exposure period, 
the treatments were removed, and any excess moisture was removed by pat drying the skin with 
filter papers to ensure that what is measured is TEWL and not wet skin [55]. Then, biophysical 
measurements were repeated at all six sites (Fig. 1c). In the subsequent visit, baseline skin pH 
measurements were obtained on four areas in both forearms, and two acidic (pH 5.0 and pH 6.0) and 
one alkaline (pH 8.0) s-urine solutions were applied for 2 hrs on the skin, with the remaining site 
serving as the untreated control. Following that, treatments were removed, and the skin was pat 
dried, as previously. Skin surface pH was recorded immediately and then every 5 mins for a total 
period of 40 mins.  
Data analysis 
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Each site served as its own control. For skin integrity parameters, data are expressed at baseline (BL) 
and after each challenge as median and interquartile ranges (IQR, 25th to 75th percentiles) and 
presented in box plots, created with GraphPad Prism 8 (GraphPad Software, San Diego, California, 
USA). Table 1 also summarizes median differences and the corresponding % change from baseline 
values. A line graph, showing medians with IQR, was also plotted to show changes in skin pH over 
time after the different challenges. All statistics were performed in SPSS version 25 (IBM Corporation, 
Armonk, NY, USA). Considering the small sample size (n=15), non-normal distribution of the results 
was assumed, and changes in biophysical measures from BL were determined by Wilcoxon signed-
rank tests. Differences between s-urine solutions were assessed using the Friedman test followed by 
Wilcoxon signed-rank tests, respectively. A significance level of 5% i.e., p <0.05 was considered 
statistically significant.  
Results 
Participants  
The study was completed by 15 healthy participants (7 males, 8 females; mean age ± SD: 34.2 ± 12), 
who were recruited from the staff and student population of the University of Southampton. All 
volunteers participated in the main study, which explored the effects of s-urine of varying pH (pH 5.0-
9.0) on the functional characteristics of skin integrity. Of those, five (mean age ± SD: 44 ± 12.30, 2 
males, 3 females) participated in the subsequent study to investigate the temporal changes in skin 
pH when exposed to urine solutions of pH 5.0, 6.0 and 8.0.  
Skin integrity  
After exposure to s-urine solutions at different pH values, an increase in TEWL, SCH and skin surface 
pH compared to baseline values was revealed, as indicated in Table 1. For TEWL, these differences 
were statistically significant (p<0.001, in all cases, Fig. 2), with a median increase ranging from 25% to 
40%. However, there was no significant difference in the degree of TEWL increase between the s-
urine solutions at different pH values (p=0.066). In addition, there was a minimal change in TEWL at  
the control site, which was not statistically significant from baseline (p=0.320). For SCH (Fig. 3), the 
corresponding percentage increases from baseline were 8.9%, 6.1%, 16.2%, 6.7% and 13.4% for pH 
values of 5.0, 6.0,7.0,8.0, and 9.0, respectively. These differences were statistically significant for 
three of the pH solutions (p=0.004 for pH 5.0, p=0.012 for pH 6.0, p=0.004 for pH 7.0), but not for the 
solutions of pH 8.0 and 9.0 (p>0.05 in both cases). However, the differences between the effects of s-
urine solutions were not statistically significant (p=0.339). In addition, there was a minimal change in 
skin hydration at the control site, which was not statistically significant from baseline (p=0.865). Skin 
surface pH (Fig. 4) was also shown to increase after exposure, with a median increase ranging from 
2.5% to 5.7%, representing a statistically significant difference in all pH s-urine solutions (p=0.001 for 
pH 5.0, p=0.002 for pH 6.0, p=0.008 for pH 7.0, p=0.002 for pH 8.0, p=0.004 for pH 9.0). However, 
there was no significant difference in the degree of skin pH increase between the s-urine solutions at 
different pH values (p=0.302). It was interesting to note that the difference in skin pH at the control 
site was also found to be statistically significant (p=0.038).  
Skin’s buffering capacity 
A transient rise in median skin pH from baseline was observed after exposure to s-urine solutions 
ranging from 0.55 to 0.61. However, pH value was restored back to baseline levels within five 
minutes and remained relatively constant by the end of measurements, as shown in Figure 5.  
Discussion 
This study examined the effects of s-urine solutions of different physiologically relevant pH (pH 5.0-
9.0) on important biophysical characteristics of healthy skin integrity, namely TEWL, SCH and skin pH. 
Although it has been reported that prolonged exposure of the skin to urine disrupts skin barrier 
function, maceration, and elevates skin pH [37], the exact mechanism by which urine and its inherent 
pH contribute to IAD has not been reported so far.  
Exposure to s-urine solutions for 2 hours caused an increase in TEWL and SCH, indicating skin barrier 
disruption and overhydration of the epidermis, although the  effects were not pH-dependent. An 
increase in cutaneous pH was also evident, although these changes were found to be transient, as pH 
values were rapidly restored to baseline within five minutes, due to the inherent buffering capacity 
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of healthy skin. This is of clinical relevance as we previously demonstrated that damaged skin 
characterized by a compromised buffering capacity and disturbance of the acid mantle, as 
demonstrated with elderly adults [56], presents an increased permeability to irritants [35]. Taken 
together, these findings suggest that the use of pH-balanced cleansers should be used in skin care 
regimens to maintain the skin acid mantle or products to keep the amino acid pool of the epidermis 
constant, primarily responsible for the buffering capacity of the skin [57], may provide an effective 
prevention strategy for IAD. In particular, buffered skin care products and cleansers containing 
amino-acid surfactants, such as glycinates, sarcosinates and glutamates are superior and milder to 
the skin than the commonly used anionic sulphate surfactants, and can therefore be used as 
cleansing agents to maintain an optimal pH value [58–60]. Our findings are in contrast with a 
previous study which reported that an increase in urinary pH is associated with more severe 
disruption of barrier integrity [39]. This could be attributed to discrepancies in study designs with 
respect to exposure time and the degree of alkalinity of solutions. In particular, Larner and colleagues 
[39] employed alkaline urinary values (pH 7.9-10.7) while this study investigated a range of urinary 
values from pH 5.0-9.0 closely resembling the pH of biological urine.  
It is currently widely accepted among clinicians that patients with urinary incontinence alone are less 
likely to develop IAD [4,6]. However, when combined with other factors skin damage, inflammation 
and IAD can occur. In particular, the presence of bacteria in urine is commonly found in patients with 
urinary incontinence [61] and indeed bacteria contaminated urine has been recognized as a risk 
factor for IAD [62]. Therefore future studies need to examine the mechanisms of IAD following 
combined exposure of skin to urine and common uropathogens associated with IAD, including 
Pseudomonas aeruginosa and Proteus mirabilis, which can also contribute to pH elevation due to its 
high urease activity [63]. 
Limitations  
We acknowledge that this study was conducted on a relatively young cohort of healthy volunteers, 
and although age is not considered a risk factor of IAD, it is associated with a high prevalence of 
incontinence [64] and older adults are characterized by a diminished skin buffering capacity due to 
decreased barrier function [30,56]. Additionally, the prescribed 2-hour exposure period was practical 
for experimental testing on volunteers, however with the increasing use of absorbent pads to contain 
incontinence changing intervals can vary and urine may remain in contact with the skin for longer 
periods.  
Conclusions 
This study demonstrated that urine disrupts barrier function and overhydrates the epidermis, which 
are characteristics of macerated skin, but alone appears not to damage the protective acid mantle, 
which is critical in maintaining the integrity of the skin. Future work needs to examine the effects of 
urine combined with bacteria responsible for pH elevation in patients with urinary incontinence. This 
would further enhance our understanding of IAD development in patients with urinary incontinence.  
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Figure Legends 
Fig. 1. Application of s-urine solutions. a) Six skin sites were marked on both volar forearms, and b) HillTop 
chambers were impregnated with 500µl s-urine and applied to the skin using a medical tape to keep them in 
place. A sixth site served as the untreated control. c) Prior to each treatment and after exposure, TEWL was 
measured to assess skin barrier disruption with the Tewameter® TM 300. 
Fig. 2. Box and whisker plots for TEWL measurement at baseline and following exposure to s-urine solutions. All s-
urine solutions caused a significant increase in TEWL compared to baseline values (p<0.001 in all cases). There 
were no significant differences between solutions (p=0.066).  
Fig. 3. Box and whisker plots for SCH at baseline and following exposure to s-urine solutions. Most s-urine 
solutions caused a significant increase in TEWL compared to baseline values (p=0.004 for pH 5.0, p=0.012 for pH 
6.0, p=0.004 for pH 7.0. There were no significant differences for solutions with a pH of 8.0 and 9.0 (p=0.069 and 
p=0.078, respectively).  
Fig. 4. Box and whisker plots for skin surface pH at baseline and following exposure to s-urine solutions. 
Significant increases in pH were observed at all skin sites, including the control (p=0.038 for control, p=0.001 for 
pH 5.0, p=0.002 for pH 6.0, p=0.008 for pH 7.0, p=0.002 for pH 8.0, p=0.004 for pH 9.0). No significant differences 
were found between the s-urine solutions (p=0.302).  
Fig. 5. The buffering capacity of the skin following exposure to s-urine. The skin’s buffering capacity was 
investigated after exposure to different s-urine solutions (pH 5.0, 6.0 and 8.0 ± 0.7). Note that after an initial 
increase in pH in all skin sites, skin pH returns to baseline values within 5 mins post-application. 
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Table 1. Median differences from baseline (BL) and % change for each skin integrity parameter 
following exposure to s-urine at different pH values.  

 TEWL 
 g/h/m² 

SCH 
AUs 

Skin surface pH 
pH units 

    
 Median difference % change Median 

difference 
% change Median 

difference 
% change 

 
 

Control -0.40 -2.9 % 3.70 1.8 % -0.02 2.1 % 
pH 5.0 4.20 25.0 % 2.26 8.9 % 0.43 4.1 % 
pH 6.0 4.50 38.4 % 5.46 6.1 % 0.29 5.7 % 
pH 7.0 4.80 34.0 % 8.84 16.2 % 0.16 2.5 % 
pH 8.0 4.30 25.9 % 2.36 6.7 % 0.19 3.8 % 
pH 9.0 4.60 39.6 % 5.30 13.4 % 0.19 4.4 % 
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