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Abstract In this study, we demonstrate how we can quantify environmen-
tal implications of large-scale events and traffic (e.g., human movement) in
public spaces, and identify specific regions of a city that are impacted. We de-
velop an innovative data fusion framework that synthesises the state-of-the-art
techniques in extracting pollution episodes and detecting events from citizen-
contributed, city-specific messages on social media platforms (Twitter). We
further design a fusion pipeline for this cross-domain, multimodal data, which
assesses the spatio-temporal impact of the extracted events on pollution levels
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within a city. Results of the analytics have great potential to benefit citizens
and in particular, city authorities, who strive to optimise resources for better
urban planning and traffic management.

Keywords Air pollution · Multimodal data fusion · Social Event-Pollution
correlation · Social Computing · Urban Computing

1 Introduction

With increasing migration of people to urban areas (55% of the global pop-
ulation lives in urban areas in 2018, expected to rise to 68% by 2050 [1]),
sustainable urbanization has been identified as “key to successful develop-
ment” [2]. This necessitates a successful management of urban growth, which
largely depends on three dimensions: economic, social and environmental [2].
An insight into the interplay of these dimensions, e.g., by using urban comput-
ing techniques, can contribute to an understanding of the evolving needs for
limited urban resources (e.g. roads, public transport and other shared public
spaces). Existing initiatives in this regard, comprising mainly the environmen-
tal and/or economic dimensions, focus on the impact of citizens’ economic
activities (manifest through human mobility and traffic) on the environment.
Some representative studies include data-driven machine learning (ML)-based
approaches for air quality characterization of cities [13,19,20,41,45], deriva-
tion of human mobility patterns based on activities [23,28,30] and prediction
of carbon emissions from city transport [27].

Social events in cities, such as sports, cultural or staged demonstrations,
involve much more large-scale human and traffic movement than rural areas
[3]. The environmental cost (manifested through impact on pollution levels)
of such events is largely unexplored, which can partially be attributed to the
lack of real-time data sources. In recent years, online social networks (OSNs)
have been flourishing and contain rich information about such events [21,42].
This is driven by the growing ubiquitous use of smartphones enabled with
GPS tracking capabilities and recent progress in communication networks,
which has led to the rise of people sharing city-related messages and mobility
updates on OSNs such as Twitter and Foursquare [42]. Citizen sensing has
been widely recognized as a complementary and corroborative information
source for understanding a city’s dynamics [42], with the massive amount
of data generated at high frequency, which is representative of the “natural,
unconstrained human behaviour” at very large scales [21]. There has been
research on the use of open data from OSNs to detect city-specific events, e.g.,
large-scale people and traffic movements [21,23,30,42], traffic incidents [4,5]
and natural disasters [7,11,10].

This work aims to address the question of evaluating the environmental im-
pact of large city-wide social events, which usually involve lots of people and
traffic movement. It combines social event detection and sensor data process-
ing in order to analyse and quantify such impact. To meet this aim, we analyze
spatio-temporal big urban data, i.e. datasets containing spatial, temporal and
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category information (s, t , c) [12,45] of cross-domain and multimodal nature,
by exploiting social sources such as Twitter (for city events) and open sensor
observations’ datasets for pollutants. Existing approaches addressing fusion of
sensor observations with OSN data, fall mainly into two categories: (1)terms
mined from OSN messages are used as ‘subjective context descriptors’ for
anomalies or trends observed in the physical sensor data (e.g. traffic or air
quality patterns) [6,34,40], and (2)those that correlate OSN and physical sen-
sor streams, where both are in the same modality, i.e. numerical [22,25,33,
36]. Hence, the existing state of the art does not address fusion of multimodal
data streams, i.e. OSN text messages and air pollutant numerical data.

1.1 Motivating Scenario

To understand the needs and challenges behind the work, we present a moti-
vating scenario. Consider that there is a football World Cup match planned
to be held in a stadium located at the outskirts of the city in a couple of days’
time. With prior experience of the environmental impact of sporting events at
such scale, the city authorities could schedule an appropriate number of extra
public transport means along the main transport routes. With fans arriving
in the city a few days in advance of the match, there is suddenly a flash mob
of thousands of people congregating at the city centre. The city authorities
become aware of this in real-time from messages posted on Twitter, receiving
also an approximation of the number of people involved. Simultaneously, air
pollution peaks are observed at a number of monitoring sites around the city,
showing appreciable correlations at the locations people are tweeting from. As
a result, the pollution and congestion alerts in the city dashboard are updated
and reflected in screens around the city: bus stops, car parks, shopping centres
etc. High pollution alerts, together with locations affected, are pushed to the
city apps that the citizens have installed on their smartphones. The coordi-
nated public transport and emergency services are also prepared effectively
and efficiently to respond to the situation.

Realization of the above scenario presents some needs: (1) to identify the
relation between large social activities and environment impact at a more fine-
grained level; (2) to better inform citizens about the environment to enable
them to make better decisions for plans and activities; (3) to inform the city
authorities about the possible problems and causes for better transportation
and infrastructure planning. This scenario also introduces a number of chal-
lenges since it involves real-time analysis of textual and numerical data in
conjunction, in order to derive meaningful information. The system needs to
derive pollution anomalies in an unsupervised manner since different urban
regions may have different spatio-temporal baselines (i.e. seasonal and local-
ity variances) for pollution levels. This scenario can also be extended to in-
clude sensor networks providing a diversity of data types, i.e. multimedia and
scalar types. Scalar data can be textual or numerical and multimedia data
can contain audio, video, or image segments (e.g. from surveillance cameras,
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audio sensors). The system also needs to consider these heterogeneous data
types which suffer from their own specific challenges, i.e. requiring handling
of inconsistencies from, e.g. sensor anomalies/breakdowns, data transmission
issues. Thus, there are at least two main challenges relevant to any enabling
system, those resulting from a sensor network perspective and those related
to converting textual OSN data into a form suitable for fusion analysis with
sensor data.

1.2 Contributions and Outline

The proposed novel cross-domain data fusion method combines both textual
OSN data and environment pollution data to detect and identify correlations
between events and pollution in public spaces. The contributions can be sum-
marised as follows:

1. fusion technique for cross-domain data in different modalities (numeric and
text) and scales of measure (nominal and ratio).

2. unsupervised pollution episode (anomaly) detection method that does not
require an offline mining step and is location-agnostic (thus, being appli-
cable to different urban regions).

3. quantification of the social impact of the events, through the ‘region of
influence’ that identifies specific areas of the city most affected in terms of
the identified pollution episodes.

The rest of the paper is organised as follows: section 2 reviews the state of
the art in data-centric urban computing approaches that analyze physical and
social network data together. Section 3 presents the study and the statistics
of the collected data; followed by section 4 which presents the architecture of
the developed data fusion system. Section 5 explains the method of extracting
events from tweets, together with an estimation of the involved population and
location tagging. Section 6 presents the data analytics methods for detecting
pollution episodes from the environmental data, followed by the data fusion
methods for correlating environmental episodes with events. Section 7 evalu-
ates the findings in terms of a well-known effect size analysis metric. Section
8 concludes the paper and discusses the planning implications of the findings
for future urban development.

2 Literature Review

There has been great interest in applying urban computing techniques to iden-
tify patterns from urban big data and infer unknown knowledge. While there
exist many studies that have explored OSN data as alternative data sources of
urban data [29], only the research works that perform analysis of observation
data from physical sensors (as numeric or time series data) in conjunction with
data generated by citizens on social networking platforms (as numeric or text
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data streams) to build models for data analytics, are relevant to this work,
and are reviewed in the sub-sections below.

2.1 Social Network data as Context Descriptor for Sensor Observations

Early research in fusing physical sensor observations with OSN data has pri-
marily focused on statistical analysis of the sensor data in isolation and then
using the social data to provide a ‘semantic context descriptor’ to the pat-
terns derived from sensor data. Examples of this class of methods include the
traffic anomaly detection work in [34,40] that use GPS traces from sensors
mounted in taxis. The detected traffic anomaly is then described by mining
terms from social media. These works fusing OSN data with sensor measure-
ments are similar to our approach. However, in contrast to the approach in
[34] that requires an offline mining step for anomaly detection (the offline min-
ing derives the normal behavior as a pre-cursor to detecting anomalies), our
fusion framework proposes an unsupervised anomaly detection method that
infers the normal data pattern as part of the online anomaly processing. A
recent citywide deployment proposal [6] takes a similar approach to the exist-
ing state of the art, where OSN data trends/analytics, citizen questionnaires
and mobile phone sensor crowdsourcing methods are proposed to provide a
subjective perception from citizens, as a complementary sensing method to
the distributed static and mobile air quality and noise sensor deployments.
The daily frequency and negative sentiment expressed in OSN messages is
also employed as an indicator of public satisfaction with perceived air quality
in [38]. The authors in this study also found that there is a marked association
between a higher AQI in a city and the frequency of OSN messages discussing
air pollution topics in that city.

However, these existing methods only utilise the mined social media terms
to describe the detected anomaly or explain the causes, whereas our approach
goes beyond this to convert the mined event topics into a numerical represen-
tation that can be conveniently correlated with the detected anomalies.

There are also studies that process physical data of different types simul-
taneously that is in the same scale of measure and mode, e.g., numerical data
in the ratio scale. Such studies mainly utilize location-based services, such as
the work by Komninos et al. [25] analyzing Foursquare check-in data and its
correlation with diurnal pollutant levels and traffic volume in Patras, Greece,
and that by Jara et al. [22] to correlate traffic behavior with temperature in the
city of Santander. Similar location-based analysis is done in [33], where the
authors mine machine-learning features from cellular base station data and
apply check-in patterns from the Foursquare OSN, as semantic annotations
for the areas near to base transceiver station (BTS) cells in terms of urban
activities such as park, travel, food, shop etc.
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2.2 Urban Informatics analyzing different Sensor Streams with Open
Datasets

Considerable research has applied data mining and machine learning-based
methods to analyze sensor data from multiple sources together with open
datasets pertaining to cities to determine trends in city dynamics or to per-
form prediction and classification analysis. For instance, the work in [27] com-
bines taxi GPS data with datasets describing the road network, points of
interest (POI) and meteorological data to predict transportation carbon emis-
sions within different city grids in Zhuhai, China. The study in [14] determines
the correlation of transport density on the road network and weather changes
by analyzing sensor data of taxi trajectories and regional weather data, and
open datasets such as the road network data and regional information, which
includes social factors such as house age, number of neighbors, number and
characteristics of POIs etc.

Urban models to predict air quality in city districts without installed moni-
toring stations have been proposed in [45,17], by considering a range of spatio-
temporal urban big data sources such as meteorology, vehicular traffic and
POI. The authors in these studies predict the causality between these urban
sources and Air Quality Index (AQI) and apply this to find the most influ-
ential data for air quality estimations. While the authors in [45] use Granger
causality measures to determine the causality associations between AQI and
urban sources, Ge et al. [17] construct a region similarity matrix and construct
a deep learning framework to fuse the air quality data with regional spatial
metadata. The research reported in [36] investigates environmental impacts on
socio-economic development (measured via GDP) by applying a sophisticated
multi-criteria decision-making enhanced TOPSIS (Technique for Order of Pref-
erence by Similarity to Ideal Solution) model to the following air pollutants:
SO2, NO2, PM10, AQI, as well as pH and dustfall. The authors calculate a
joint indicator between air pollution and GDP by determining the relative dis-
tance between sample points and the optimal/worst sample. The results show
that GDP has been rising steadily for the 20 years that the measurements
have been considered (1996-2015), while air pollution peaked in 2010 and then
dropped. Bermudez-Edo et al. [8] propose a sliding time window pipeline to
detect correlations between two traffic streams over distinct road segments.
They employ both Pearson correlation and mutual information methods to
investigate their effectiveness at detecting spatio-temporal correlations, with
one of the findings being, that if the correlation displays a pattern, then a
temporal series can be used to analyze if certain data changes can predict
other values over a period of time.

Table 1 provides a comparison of the current state-of-the-art methods ac-
cording to a number of metrics that are illustrative of the characteristics of
studies looking at fusing physical sensors’ observations with OSN data. The
metrics related to the data sources, modality of data sources and fusion as-
pects, bring out the challenges relevant to this work.
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Our investigation of the literature work shows that data analytics from
both social media data and physical sensor data simultaneously remains a
challenging problem due to the large ‘semantic gap’ among the different data
types. Most of the existing approaches mainly focus on correlating numerical
physical and social sensing data, or use text OSN data as a annotation element,
whereas our proposed system is able to leverage cross-space multimodal data
(textual data from Twitter and numerical time-series pollutant data).

3 Case Study and Dataset Characteristics

This work uses the 2012 London Olympics as a validating use-case. Taking
this large-scale event as a case study mitigates the risk of the data sparsity
challenge [44], where in addition to missing values for the relevant pollution
sensor measurements, there may be no pollutant measurements available for
the same spatial and temporal range as the events detected from the Twitter
social platform.

3.1 Air Quality Monitoring Sites

As the NO2 pollutant is highly related and sensitive to traffic and mobility of
urban residents, we chose it as the target pollutant. The dataset used in this
work was recorded by retrieving data from LondonAir [26], the London Air
Quality Network (LAQN) website, which provides the data from the large-scale
deployment of air pollution monitoring sites across London. It contains data
for the duration of the Olympic Games (26 July – 12 August 2012). NO2 con-
centrations were retrieved at 15-minute intervals. The monitoring sites were
carefully chosen, including those situated in the vicinity of the main Olympic
stadiums, and also in central London to capture the main transport direc-
tions towards the stadiums. By focusing on this subset of monitoring sites,
our work aims to detect ‘local pollution episodes’ that occur for a limited tem-
poral duration and may be distinct from larger episodes attributed to weather
phenomena or seasonal variations. To capture the effects of events on pollu-
tion, Roadside (situated 2-10m away from the road) and Urban Background
(>10m away from main roads and >30m from busy roads) sites were chosen to
account for both pollutant generation and dispersal. Table 2 shows the sites’
information, including the site type and site code. Fig. 1 maps the monitor-
ing site locations, together with that of the Queen Elizabeth (QE) Olympic
Stadium.

3.2 Twitter data

The tweets corresponding to the time span of the validating use case (using
time constraints: since:26-07-2012 until:13-08-2012 (excluded)) and with place
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Table 1 Comparison of Related Work
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Table 2 Information of Monitoring Sites

Local Author-
ity

Site
Code

Site Name Site type

City of London CT6 City of London – Walbrook Wharf Roadside
Hackney HK6 Hackney – Old Street Roadside
Islington IS2 Islington – Holloway Road Roadside
Newham NM2 Newham – Cam Road Roadside
Redbridge RB4 Redbridge – Gardner Close Roadside
Tower Hamlets TH2 Tower Hamlets – Mile End Road Roadside
Tower Hamlets TH4 Tower Hamlets- Blackwall Roadside
City of London CT1 City of London – Senator House Urban Background
City of London CT3 City of London – Sir John Cass School Urban Background
Islington IS6 Islington – Arsenal Urban Background
Newham NM3 Newham – Wren Close Urban Background
Tower Hamlets TH1 Tower Hamlets – Poplar Urban Background
Tower Hamlets TH5 Tower Hamlets – Victoria Park Urban Background

Fig. 1 Pollution monitoring sites and event (QE Olympic Park) locations

keywords (i.e. London) were retrieved from the Twitter search API. A to-
tal number of 1,625,508 tweets were collected. Fig. 2 shows the distribution
of tweets retrieved over the event time span, with two major peaks in tweet
activity corresponding to the opening (27 July) and closing (12 August) cer-
emonies of the London Olympics Games, during which 234,912 and 164,194
tweets were collected, respectively. The numbers of tweets on other days vary
from 20,000 to 100,000.
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10 Suparna De et al.

Fig. 2 Distribution of tweets during the 2012 London Olympics duration

Fig. 3 System Architecture

4 System Overview

Fig. 3 shows the system architecture for data fusion and analytics, which
consists of three parts: event detection, pollution episode extraction and data
fusion.

Event Detection : as a precursor to analyzing the pollution data, messages
from social media, i.e., the tweets, are retrieved using the time span of the
chosen scenario and tagged with the broad location name (e.g. city or city
region). Following pre-processing with tokenization and stop-word removal,
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Cross-domain Multimodal Data Fusion 11

events are determined from the cleaned tweets by extracting latent topics by
using the Twitter-LDA method. More precise event location is also determined
by deriving the location terms contained in the tweets.

Pollution episode extraction : as shown in the middle of Fig. 3, the pollution
episode extraction step takes in the pollutant data from the various monitoring
sites of a city. A pollution episode represents points of inflection at which the
sensed data may show sharp and sudden changes. Pollution episodes reported
by the majority of the monitoring sites covering the entire or large regions of a
city may be attributed to weather phenomena or seasonal variations. To cap-
ture the effects of events on pollution episodes manifested through increased
human and traffic flows, our work focuses on ‘local’ anomalies that are de-
tected only by a subset of monitoring sites located close to each other for a
limited temporal duration. The collected datasets can be in different data for-
mats (e.g., CSV or JSON) and scale; in the pre-processing step, the raw data
needs to be cleaned and then integrated. Finally, the Kolmogorov Complexity
(KC) [24] score analysis is applied to generate the anomalous graphs.

Data fusion : the steps depicted in the right column of Fig. 3 aim to analyze
and explain the pollution episodes in order to derive knowledge about the
relations between the episodes and events. This is achieved by finding the
presence of significant correlations between the anomalous graphs and the
representative event topics. The analysis also includes determining the scale
and impact of the event on the deviation of the pollutant levels.

5 City Event Detection from Twitter

This section applies the method from our previous work on event extraction
from Twitter [42] and briefly explains the Twitter-LDA and Gibbs sampling
algorithms for topic selection and classification.

5.1 Tweets Pre-processing

The place names and temporal information (date parameters di) are used as
input to retrieve relevant tweets from the Twitter search API. All the tweets
posted on a day are considered as a document, which is subjected to tokenisa-
tion, stop words and noisy words removal (expressions such as ‘yay’ and ‘ha’).
URL links and unreadable codes are also removed. Given the nature of the
tweets and lack of unlabeled data, we adopt an unsupervised approach to infer
topics discussed in tweets as well as their relevant keywords and distributions
of topics over a day. To better interpret the meanings of these inferred, unla-
beled topics, we map them to the broad event categories developed by Ritter
et al. in [35].The categories identified include: [Traffic — Culture — Sports —
Air Quality — Weather — Disaster — Non-event].
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12 Suparna De et al.

5.2 Twitter-LDA Analysis

The Twitter-LDA model [39] is a customisation of the original Latent Dirich-
let Allocation (LDA) model, which is suitable for processing short text such
as tweets. It assumes that a tweet only discusses one topic and contains a
small number of background words that do not contribute to any topic. For
more technical detail about the generative process of Twitter-LDA, readers
are referred to [39].

Algorithm 1: Gibbs Sampling on Twitter-LDA

Input: Preprocessed Tweets collection on several dates d1, d2, d3 . . .
Output: Distribution of Topics over dates, Distribution

1 Initialise topics matrix T, background/topic decision matrix Bt
2 for iteration i = 1,2,3. . . do
3 for each date’s tweets collection dj=tw1, tw2, tw3. . . do
4 for each tweet twk = w1, w2, w3. . . do
5 T [j][k] = Sample T () // Sample a topic for the tweet

6 for each word wl do
7 Bt[j][k][l] = Sample Bt() // Sample a decision for the

word

/* Generate distribution of topics over each day */

8 Distribution = compute distribution();
9 return Distribution

Gibbs Sampling is used to infer the latent topic and keyword distributions
in the Twitter-LDA model and is described in Algorithm 1. In the beginning,
topics are randomly assigned to each word. The words are also attached with
a decision of whether it is a topical or background word. The algorithm then
iteratively samples a topic for the document and makes a decision over each
word on whether it is background or topical, through the posterior distribu-
tion calculated from the previous iterations. The distribution is then updated
accordingly. After a certain number of iterations, the distribution of topics
over each day starts to converge. The output of the inference includes the
topics with the list of top related keywords and the number of tweets for each
topic. Since Twitter-LDA is an unsupervised method, the extracted topics are
unlabeled. To better understand the meanings of the latent topics, they can
be linked to type of events as defined in [35]. Each specified event type defines
a list of related keywords, which are used to match to the top keywords for
each latent topic inferred from Twitter-LDA. A topic will be classified as an
event type if most of its top keywords match the keyword collection of the
corresponding event type. If a topic cannot match any keywords, it will be
classified as a non-event.
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Table 3 Top-5 Keywords for the Top-10 Frequent Topics

Rank Topic Event type Top-5 keywords

1 T49 Culture london back love day london!
2 T52 Sport 2012 medal olympic olympics gold
3 T63 Sport 2012 olympics london olympic games
4 T77 Non-event lol lauren love im girl
5 T69 Culture london, fashion august show tickets
6 T12 Sport 2012 gold bolt olympics usain
7 T36 Culture opening ceremony 2012 olympics Olympic
8 T78 Sport 2012 basketball team men’s Olympics
9 T47 Culture 2012 closing olympics london ceremony
10 T97 Non-event united #job #jobs london, kingdom

5.3 Event Scale Estimation and Location Tagging

The scale of a detected event is defined as the size of the population involved
in that event. It can be estimated based on the frequency of the tweets relating
to the event and the population of a city. As can be seen shortly, the estimated
values are fairly close to the true values. The final step is to determine the
‘precise’ location of the events detected from the tweets. An aggregation and
rank-based location entity detection approach is developed which extracts the
location entities in the relevant tweets using location named entity recognition
model based on OpenNLP [16]. The detected location entities are aggregated
and ranked by their occurrences, with the two ranked at the top considered
representative of the event location. The associated geo-location coordinate in-
formation is determined by formulating a query to the Google Maps Geocoding
API [18].

Table 3 introduces the top 10 detected topics, their determined category,
and their top 5 related keywords. Topic T49 (“london back love day london!”)
is matched to a Culture event according to its keywords. T52 (“2012 medal
olympic olympics gold”), T63 (“2012 olympics london olympic games”), T12
(“2012 gold bolt olympics usain”), and T78 (“2012 basketball team men’s
olympics”) indicate particular Olympics sport events. T77 (“lol lauren love
im girl”) is matched to a non-event topic. T69 (“london, fashion august show
tickets”) is a culture event about a show and performance in London. T36
(“opening ceremony 2012 olympics olympic”) and T47 (“2012 closing olympics
london ceremony”) indicate the opening and closing ceremonies of the London
Olympics Games. They are classified as culture events, since they are celebra-
tory ceremonies. Fig. 4 gives the distributions of the top 10 frequent topics.
Two obvious spikes in the figure indicate topics discussing the opening cer-
emony (27 July - T36) and closing ceremony (12 Aug - T47). T97 (“united
#job #jobs london, kingdom”) indicates a non-event topic for jobs.

The event scale estimation provides a figure of 70,317 members of the
population being involved in the Olympics event, which is close to the 80,000
capacity of the Olympics stadium.
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Fig. 4 Distribution of the top-10 frequent topics

6 Composite Effects of Detected Events on Pollutant Levels

6.1 Pollution Episode Extraction

As the collected sensor data might contain duplicates, missing or incorrect
values due to noise, equipment maintenance, recalibration or communication
faults [17,44], pre-processing for such data is also needed. It consists of 2 steps:
in the data cleaning step, the sensor observation data is collected and stored;
then, each data point is checked and all negative values (below 0) are marked
as invalid and removed; in the data formatting step, the cleaned data is for-
matted into time series by applying JSON or CSV scripts depending upon the
retrieved data. Pollution episodes, where the data exhibits a pronounced depar-
ture from the ‘normal behavior’ are extracted by calculating the information
theoretic Kolmogorov Complexity (KC) [24] score, which is computed through
the Kolmogorov-Smirnov test [15]. For each data point, it computes the Eu-
clidean distance to all other data points in a random sampled sequence; this
forms a sequence A. Next, a new sequence is sampled randomly: for the data
points in this new sequence, their distances to data points of the first random
sampled sequence are computed and form new distance sequences B1, B2...Bn,
where n is the number of sampled data points. The Kolmogorov-Smirnov test
is applied to A and each of B. The mean value of Kolmogorov-Smirnov test
values is the KC score.

6.2 Correlation Analysis and Region of Influence

Based on the geographical and the temporal constraints, the associations be-
tween detected pollution episodes and the events can be derived. In particular,
the impact of the events extracted from social media on the pollution (e.g., the
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identified NO2 patterns as well as the pollution ‘episodes’) is derived through
correlation analysis.

To calculate the correlations, both anomalies in pollution and events need
to be quantified as arrays of numbers. Also, the spatial and temporal informa-
tion of the pollution and events should match, i.e., locations and time of the
sensing data and events are close to each other. The pollutant representations
consist of arrays of KC-score values of the sensing data across a number of
different days, while events are represented by the ratio of tweets involved in
the particular event topics to the total number of collected tweets on a day.

Since the impact of the events could involve a broader geographic scope
than the exact event location, e.g., through traffic flows, the pollutant data
from the nearby sensing locations is also considered in the impact analysis.
The relevant monitoring sites are selected based on proximity (within a defined
radius of the monitoring site where the pollution episode is detected and also
the event location), using the geospatial search algorithm proposed in [43].
The search algorithm implements a distance query by taking as inputs the
Geohash representations of the event location and returns the names of the
monitoring sites within the required radius. The resultant sites are a subset of
those presented in Table 1 and include the following 11: CT6, HK6, IS2, NM2,
RB4, TH2, TH4, NM3, TH1, TH5 and CT3.

The implementation has been done using Matlab and Java, and is available
as a Docker image hosted on the Docker hub repository1, together with a de-
scription of commands for pulling down the Docker images and their execution.
The implemented component takes as input Twitter tweets and environmen-
tal pollution data, and computes the Pearson correlation between city events
impacting people and/or traffic flows (identified from the tweets) with the mea-
sured pollution levels. It uses as input two files, one containing the measured
pollution, e.g. NO2 levels at a given place for a day, and the other collected
tweets for the same time period and place. The pollution measurements file is
a csv file that contains sensing data collected from different sensing sites, with
the measurement dateTime (dd/mm/yyyy hh:mm) in the first column and the
NO2 values for the different sensing sites in the following columns. A default
data.csv file is provided which contains pollution values from different sites in
London. The second input file is a text file that stores the text of collected
tweets for each day, with one tweet in each row. A default tweetslist.txt file is
included with tweets from London for the Olympic event days.

Fig.5 shows the Pearson correlation results between the sensed NO2 data
and the detected event topics. As a complement of correlation analysis, p-
values, as shown in Table 4, are also calculated to determine whether it can
reject the null hypothesis of no correlation between anomalies and events. A
p-value of <0.05 denotes significant correlation, showing that a strong impact
of events on pollution level reasonably exists.

In Fig.5, roadside sites such as Newham-Cam road (NM2), Tower Ham-
lets – Mile End (TH2) and Blackwall (TH4) show a strong correlation with

1 https://hub.docker.com/r/ikaas/anomaly-detection
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Fig. 5 Monitoring site pollutant – detected event correlation

Table 4 p-values for event-pollutant episode correlation

Site Code T49 T36 T52 T47 T63 T77 T69 T12 T97 T78

CT6 0.95 0.77 0.52 0.75 0.84 0.67 0.46 0.85 0.64 0.96
HK6 0.72 0.87 0.69 0.35 0.36 0.27 0.40 0.65 0.46 0.69
IS2 0.85 0.79 0.91 0.64 0.72 0.59 0.32 0.75 0.39 0.58
NM2 0.01 0.00 0.46 0.57 0.02 0.12 0.13 0.62 0.05 0.39
RB4 0.88 0.18 0.10 0.25 0.94 0.09 0.28 0.66 0.29 0.09
TH2 0.07 0.03 0.64 0.41 0.02 0.45 0.14 0.59 0.06 0.53
TH4 0.01 0.01 0.96 0.70 0.08 0.08 0.14 0.99 0.06 0.59
CT3 0.13 0.08 0.56 0.55 0.03 0.49 0.13 0.50 0.09 0.72
NM3 0.10 0.10 0.68 0.98 0.18 0.13 0.14 0.68 0.08 0.97
TH1 0.07 0.07 0.76 0.65 0.10 0.16 0.07 0.78 0.04 0.95
TH5 0.37 0.53 0.84 0.98 0.23 0.38 0.14 0.94 0.12 0.82

T36 (“opening ceremony 2012 olympics olympic”), in terms of KC-scores. The
Pearson correlation values are 0.70, 0.51 and 0.62, respectively. High values
are also observed with the overall Games topic (T63: “2012 olympics london
olympic games”). As shown in Table 4, the corresponding p-values (0.0, 0.03
and 0.01) for T36 confirm the strong relationship between the opening cere-
mony event and the detected anomaly in the pollution pattern at these sites.
The sites of NM2 and TH2 display similar association with the overall Games
topic T63, with identical p-values of 0.02. The results are in fact coinciding
with what is anticipated. As these sites are roadside monitoring stations, the
corresponding sensed pollution data is highly influenced by the traffic through
the roads. In addition, the selected measurement, NO2 is largely impacted by
traffic. As shown in Fig. 1, Mile End Road (TH2) and Newham-Cam Road
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(NM2) are on a major navigation route from central London to the Olympic
Park site (along the A11 primary road). The increased traffic on the opening
day of the Olympics does impact the pollution levels. Similarly, T36 has a sig-
nificant correlation with data from the sensing site at Blackwall (TH4), which
is on a road (primary road A12) from the south of London to the Olympic
Park. These results indicate the most preferred route taken by people travel-
ling to the Olympic Games stadium from central London. The results show
that the NO2 pollution levels, mainly caused by traffic, are indeed highly in-
fluenced by the opening ceremony hosted in the Olympic Park. In contrast,
urban background sites show a low correlation with the relevant Games topics,
even for sites such as TH5, which is located close to the event venue. The clos-
ing ceremony of the London Olympics Games (topic T47) does not have such
an evident relationship according to the calculated correlation results; since
it was on the 12th Aug (Fig.4), while the detected pollution data anomaly
from the Mile End Road sensing site according to its calculated KC-score is
on 10th Aug. Taken together, these results point to the region of influence of
the Olympic Games event as well as the specific sub-event, e.g. the opening
ceremony, on distinct geographical regions in terms of the recorded pollution
anomalies.

7 Evaluation

Inspired by effect size quantification in education theory [9], causality measures
are proposed in this section, in order to evaluate by how much the events
statistically influence the pollutant anomaly values. This forms a key-factor
analysis of the environmental impact of the events through statistical causality
measures such as ANOVA η2 [32] for effect size quantification. The η2 measure
estimates the magnitude of the effect of the independent variable (detected
event in our case) and has quantified measures to categorize effect size (e.g.,
low, moderate or high). It is calculated as:

η2 = SSA/SST (1)

where SST is the total sum of squares component, which can be partitioned
into between-group sum of squares (SSA) and the within-group or the error
sum of squares (SS s/A), representing the variation due to the independent
variable and variation due to individual differences in the score, respectively:

SST = SSA + SSs/A (2)

The sum of squares between groups (SSA) examines the differences among the
group means by calculating the variation of each mean (Ȳ .j) around the grand
mean (Ȳ ..), as shown in (3) below:

SSA = n
∑
j

(Ȳ.j − Ȳ..)
2 (3)
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where n is the number of observations in each group, Ȳ .. is the mean of
the full sample and is calculated across all individuals and all groups.

A single score is represented by Y ij, indicating the score is for an individual
i, within a particular group, j. The “.” refers to computing across that element,
either individuals or groups. Then, Ȳ .j is the mean of a particular group, j;
the “.” is used in place of the i because the mean is calculated using all the
‘i’s for a particular group.

SS s/A is the variation of individual scores around each group mean and is
calculated by (4):

SSA =
∑
j

∑
i

(Yij − Ȳ.j)
2 (4)

To show the effect size of the independent variable, the sites are separated
according to the site type (roadside and urban background) and η2 values are
calculated for all of the days (event and non-event days). Doing this enables us
to determine the effect over the short period of the detected event in compar-
ison to a long period when other events may affect the results. The resulting
values show that the days without the events have smaller values than the pe-
riod including the event days, for the roadside sites NM2, TH2 and TH4; other
sites do not show any statistically significant effect. Moreover, the calculated
values show a moderate effect for NM2 (0.06) and a lower effect for TH2 and
TH4 (0.027 and 0.0068, respectively), according to the general rule of thumb
for η2 given by Miles and Shelvin [31].

These results corroborate the correlation analysis performed in the previous
section, with the same monitoring sites showing statistically significant causal-
ity of the events on the monitored pollutant levels. With the events showing a
statistical significant influence on the same monitoring sites as derived in the
previous section, this also supports the region of influence inference as well.

8 Conclusions

This work attempts to quantify the environmental impact of social and cul-
tural events which involve large-scale traffic and human movement in public
spaces within a city. The developed novel cross-domain data fusion techniques
combine social network data with environmental sensor data to detect and
identify correlations between events and pollution levels. The results have
great potential to contribute to an increased understanding for public space
management and pollution (or air quality), which could improve the quality
of life for citizens. The correlation of air quality with city events, which is
ultimately influenced by mobility of people and vehicles, has important so-
cial implications for a connected city, e.g., for planning of public spaces and
infrastructures such as hospitals and schools. This insight allows to adopt a
data-enabled collaborative approach to plan and build responsive urban areas
that helps inform people’s decision making and enables urban authorities to
plan for the best possible use of limited city resources. This is in line with
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the observations from the pioneering urbanist William Whyte, who stressed
on careful observation and collection of data to answer questions on building
psychologically healthy urban spaces [37].
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