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Abstract

This study compared the acute effects of resistance training between a moderate (ML) and a
high loading (HL) intensity (12RM vs 4RM, respectively), with the same intensity of effort on

arterial stiffness and wave reflection in young healthy adults.

Eleven healthy adults (age 36.4 + 6.8 years) performed two resistance training (RT) protocols,
ML and HL, in a randomised order. Both RT sessions consisted of three sets of deadlifts and
three sets of bench press, with two minutes rest between sets and exercises. Loading intensity
was 12RM and 4RM for the ML and HL condition, respectively. Measurements of pulse wave
velocity (PWV) and pulse wave analysis (PWA; e.g., augmentation index) were collected at

baseline, immediately post and 15 minutes post training.

ML elicited significantly greater increases in carotid-femoral PWV (from 6.4 £ 0.3 to 7.3 £ 0.5),

and augmentation index normalised to 75 bpm (from -5.1 £ 1.1) than HL (all p < 0.05).

These findings demonstrate that an acute bout of RT performed to volitional failure using
lower loads and higher repetitions impose a greater workload on the arterial and

cardiovascular system in comparison to a RT scheme with heavier loads and lower repetitions.
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1. Introduction

Arterial stiffness (AS) is an independent predictor of cardiovascular disease (CVD) and is
strongly associated with hypertension and future cardiovascular events [1]. Regular
participation in resistance training (RT) has been endorsed by current guidelines as a
promising intervention for the prevention and treatment of CVD [2]. Yet, the effects of RT on
AS are not fully understood and remain to be ascertained [3]. Interestingly, increases [4],
decreases [5] and no changes [6] in AS have been reported following both acute and chronic
RT interventions. Differences in the loading characteristics among the prescribed RT protocols

(i.e., loading intensities, proximity to failure) may account for the discrepancies observed [3].

Loading intensity is a well-researched training variable particularly in the field of muscular
hypertrophy and strength [7], yet there is a paucity of research directly examining the effects
of different loading intensities on AS. One of few studies to directly investigate loading and AS
compared the effects of heavier [75% - 90% 1-repetition maximum (1RM)] vs lighter load (30%
- 50% 1RM) RT on AS and reported a reduction in AS regardless of the load lifted (Au et al.,
2017). Elsewhere, Werner et al. (2021) reported no differences in AS after a 12-week RT
programme performed using high (80 - 90% 1RM) or moderate (50% - 70% 1RM) loading
intensities. Nitzsche et al. (2016) reported acute increases in AS following low (30% 1RM) and
moderate (50% 1RM) intensities but not following a higher loading intensity (70% 1RM) in
young healthy adults. These findings contrast a recent meta-analysis which suggested that
loading intensity is the key variable determining arterial responses to RT [8]. It was noted that
low to moderate loading intensities (< 70% 1RM) tend to decrease AS, whereas high loading
intensities (> 70% 1RM) seem to increase AS particularly in young individuals [8]. Nonetheless,
the lack of control over proximity to failure in previous reports may be a confounding factor

when interpreting these findings [6, 9].

Proximity to failure operationalised as ‘intensity of effort’ [10], appears to be a major
determinant of cardiovascular [11] and metabolic [12] responses to RT. Notably, loading
intensity in the study by Nitzsche et al. (2016) was prescribed in relative terms (i.e., as a
percentage of 1RM) with a fixed number of repetitions (i.e., 3 sets of 10 repetitions at 70% of
1RM), despite previous evidence suggesting large variability in the number of repetitions that
can be performed at given relative load by different individuals [13]. That said, it has recently
been suggested that standardisation of effort allows for a more appropriate comparison of
other training variables, such as load, since it ensures a more uniform stimulus and establishes

parity among the conditions or groups under investigation [14].
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High and low loading intensities may elicit similar hypertrophic responses [7], however high
loads may induce superior neural adaptations [15]. Notably, muscular strength exhibits a
stronger inverse relationship with AS than muscle mass alone across a wide age (20 -75y) span
[16]. Thus, identifying the potential impact of loading intensity on AS would assist in

determining the most effective RT prescription for improved vascular adaptations.

To date, there is no study that has directly compared the effects of load on AS while
standardising proximity to failure. Thus, the purpose of this study was to compare indices of
AS between a strength-type RT scheme using heavier loads (4RM) and lower repetitions with
a hypertrophy-type RT protocol using moderate loads and repetitions (12RM) while
maintaining intensity of effort constant. Based on the available evidence, it was hypothesised
that the high load session would increase AS, whereas the moderate load would reduce or not

significantly affect AS.

2.Methods
2.1 Participants

Eleven young healthy participants (5 male, 6 female) volunteered to participate in this study.
Participants were classified as recreationally active who had been participating in resistance
training (e.g., with free weights or weight machines) at least once a week for the last 6 months.
All participants were in a good state of health, non-hypertensive and free of any cardiovascular,
musculoskeletal, and metabolic disease. All female participants voluntarily reported that they
were tested during the follicular phase of their menstrual cycle, although previous research
indicates minimal influence of different menstrual cycles on AS measured by cfPWV [17].
Participants were not taking any prescribed medications known to affect vascular function
during the study period. Prior to participating in the study and after being informed of the
study's procedures, all participants provided written informed consent. The study was
approved by the Faculty of Health and Wellbeing Research Ethics Committee at the University

of Winchester.
2.2 Sample size calculation

Sample size was calculated using G*Power 3.1 (version 3.1.9.7, Heine University, Diisseldorf,
Germany). The effect size was estimated based upon a between-group (e.g., heavier vs lighter
load) partial eta squared (77;2;) effect size of 0.114 reported for acute cfPWV in a previous study
[18]. Thus, for a repeated measures within factors design, with an effect size F = 0.35, a
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significance level of 0.05, a power of 0.80, and a correlation among repeated measurements
of 0.70 [19], a sample size of 11 participants was found to be sufficient to show a difference

between higher and lighter load RT conditions, while accounting for a 10% drop-out.
2.3 Study design

Participants took part in a randomised cross over design and reported to the research facility
on four separate occasions. The first two visits consisted of anthropometric measurements
(i.e., height and body mass), and a familiarisation session in which participants were
introduced to the experimental procedures and RM testing, to determine individual 4RM and
12RM training loads for the deadlift and bench press exercise. Loading prescription of the two
RT sessions was based upon the ‘repetition continuum’ also known as the ‘strength-endurance
continuum’ [20]. According to the repetition continuum strength gains are maximised by a low
repetition strategy with heavy loads (1 to 5 repetitions per set with 80% to 100% of 1RM) while
a moderate repetition scheme with moderate loads (e.g., 8—12 repetitions per set at 60%—80%
of 1RM) maximises hypertrophic adaptations [21]. In the third and fourth visits, participants
were randomly assigned RT protocol using either a 4RM (High Load; HL) or 12RM (Moderate

Load; ML). Participants refrained from strenuous physical activity for 24 hours and large meals

and caffeine consumption for at least 4 hours prior to testing [22]. _

2.4 RM Testing protocol and Experimental sessions
RM testing protocol (visit 1 and 2)

The maximum amount of weight lifted for 12 and 4 repetitions with proper form in the deadlift
and bench press exercise was recorded as the participant’s 12RM and 4 RM load respectively.
This was determined following the guidelines proposed by the National Strength and
Conditioning Association [23]. All RM loads were determined in no more than 5 attempts with

rest periods of 3 minutes between the trials.
Experimental sessions (visit 3 and 4)

Two RT sessions comprised the experimental protocol, one for each condition (HL and ML).
Both RT sessions consisted of three sets of deadlifts and three sets of bench press. Rest
duration was two minutes between sets, and two minutes between exercises, for both
conditions. Participants were guided by the researcher to adopt a repetition tempo of
approximately 1s concentric, 2s eccentric and 1s isometric pause between concentric and
eccentric actions. Intensity of effort was standardized between the experimental conditions

5
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and during both sessions exercises were performed to volitional failure [i.e., the exercise was
terminated once trainees determined they could not complete further repetitions if attempted
[24]]. If a participant reached momentary failure [i.e., the inability to perform another
concentric repetition despite attempting to [25]] before performing the expected number of
repetitions (i.e., 12 or 4) in a single set, the set was terminated without any further attempts
to complete the required number of repetitions. Loading intensity was set at 122RM and 4RM

for the ML and HL condition respectively.
2.5 Haemodynamic Measurements

Haemodynamic measurements were collected three times during the experimental
procedure: before training (baseline), immediately post (Post) and 15 minutes post training
(15Post). All measurements were collected in a supine position. The first haemodynamic data
collection was conducted after 10 minutes of rest in a supine position [22]). Following that,
participants completed the warm-up routine as described above, and then completed their
randomly assigned RT protocol. Participants returned to the supine position immediately post
the acute RT protocol while data collection equipment was applied and remained supine until

completion of 15Post assessments.

All haemodynamic measurements were performed using a validated oscillometric cuff-based
device (Vicorder, Skidmore medical, Bristol, UK), that calculates PWV by simultaneously
recording the upstroke of the femoral and carotid pulsations [26]. Two inflatable cuffs were
used to measure Carotid-femoral PWV (cfPWV), one placed around the neck over the carotid
artery and the other around the thigh over the femoral artery. CfPWV was calculated by
dividing the pulse wave travel distance by the pulse transit time between the two recording
sites. Transit time was determined by the software using an in-built cross-correlation algorithm
and travel distance length was defined as the distance from the suprasternal notch to the mid
upper thigh cuff, as indicated by the manufacturer. Augmentation index is an indicator of AS
which reflects the augmentation of systolic blood pressure by reflection of the peripheral pulse
wave. Alx was calculated as the ratio between the augmentation pressure (AP) and the central
pulse pressure (Cpp) and was expressed as a percentage (Alx = AP/Cpp x 100). Alx was
normalised to 75 beats per minute (bpm) to reduce its reliance on HR (Alx@75), as previously
suggested [27]. Measurements of subendocardial viability ratio (SEVR), an index representing
myocardial perfusion, which is calculated as the ratio between diastolic pressure time index

(DPTI) and systolic pressure time index (SPTI) [28]; and of central and peripheral blood
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pressures were performed using a cuff placed around the upper arm over the brachial artery

and assessed using device-specific pulse wave analysis [29].
2.6 Statistical Analysis

All descriptive data are expressed as means * standard deviation. Normality of distribution
was assessed by the Shapiro-Wilk test and visual inspection. A two-way (Condition x Time)
repeated measured analysis of variance (ANOVA) was conducted to evaluate the effects of

condition, time and the interaction between them for: cfPWV; Aix; Alx@75; central systolic

peripheral diastolic (pDBP); _ and SEVR. Violations

of sphericity were adjusted for using the Greenhouse-Geisser correction. Post-hoc pairwise
comparisons with a Bonferroni correction were conducted when Condition by Time
interactions were detected. Analysis of the effect size was conducted using the partial Eta
squared (1712,). The magnitude of effect size was interpreted as trivial (< 0.01), small (0.01-0.06),
moderate (> 0.06-0.14), and large (> 0.14) [30]. Significance was set at p < 0.05. Data were
analysed using SPSS version 28 statistical software (SPSS Inc, Chicago, IL, USA). A linear mixed-
effects model (Jamovi, version 2.3.28) was also employed to evaluate the effect of the
intervention on cfPWV (primary outcome), controlling for cMAP as a covariate [22]. Random
intercepts were included for each subject to account for repeated measurements over time.
Fixed effects in the model included Condition, Time, and the interaction between Condition

and Time, [HNICICNIABRVESHRCINERER s - covariate to account for its effect on cfPWV. Residual

plots were examined to verify model assumptions of normality and homoscedasticity.

3. Results
Characteristics of the study participants are displayed in Table 1.

There were no significant differences between the experimental conditions at baseline (BL) for

any of the variables analysed (all p > 0.05).

Haemodynamic data are shown in Table 2. Significant Condition and Time interactions were
observed for cfPWV (n3 = 0.47), Alx (n5 = 0.4), and AP (nj = 0.42) (all p < 0.05). Post-hoc
analysis revealed that changes from BL to Post for cfPWV, Alx and AP were significantly higher
in the ML compared to HL. In the ML condition, cfPWV, was significantly greater than BL at
both Post and 15Post, but significantly decreased from Post to 15Post (p < 0.05). Alx and AP

showed a similar trend and were significantly greater than BL at both Post and 15Post following
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the ML condition (all p < 0.05). In the HL condition no significant differences in cfPWV from BL
were observed, while Alx and AP significantly increased between BL and Post only. cMAP had
no significant main effect on cfPWV (p = 0.14), therefore a similar statistical Condition by Time
interaction was observed for cfPWV when controlling for cMAP (p < .001) (Figure 2). There

were no significant Condition by Time interactions for all other variables (Table 2).

Main effects of Condition were detected for Alx@75 (1, = 0.45), HR (n; = 0.44) and SEVR
(ny = 0.49) (all p < 0.05), in which Alx@75 and HR were significantly higher and SEVR was

significantly lower in ML compared to HL.

Main effects of Time were detected for Alx@75 (n; = 0.34), cSBP (5 = 0.45), cDBP (n; =
0.43), pDBP (n; = 0.41), HR (n; = 0.32) and SEVR (n; = 0.52). Alx@75, cSBP, and HR
significantly increased from BL to Post. cDBP and pDBP significantly decreased from BL to Post,
while SEVR significantly decreased throughout the recovery period (p < 0.05). There were no

significant Condition by Time interactions, or main effects for pSBP and cMAP (all p > 0.05).

4, Discussion

This study compared acute changes in indices of AS and central haemodynamics between two
RT protocols with a high (HL) or moderate (ML) loading intensity (4RM vs 12RM), while keeping
intensity of effort, repetition duration and rest interval constant. Contrary to our hypothesis,
ML promoted significantly greater increases in AS and pulse wave reflection, and significantly
reduced myocardial perfusion when compared to the HL condition. These findings suggest that
an acute bout of RT performed to volitional failure using a moderate loading intensity of 12RM
places a greater demand on the arterial and cardiovascular system as opposed to a RT protocol

with a higher loading intensity of 4RM.

Results of the present study are in partial agreement with a previous study assessing acute AS
responses following RT protocols performed at different loading intensities [18]. Similarly to
the current study, where cfPWV increased 14% immediately post ML exercise, Nitzsche et al.
(2016) reported a 13.8% and an 8% increase in cfPWV immediately post RT consisting of three
sets of 30 reps at 30% of 1RM load (i.e., low load) and three sets of 20 reps at 50% of 1RM
load (i.e., moderate load), respectively. Likewise, the protocol classified by Nitzsche et al.
(2016) as the ‘high load’ (i.e., 3 sets of 10 reps at 70% of 1RM) did not induce any significant
changes in cfPWV, a finding that was also supported in the current study. Contrary to the

present study in which all sets were performed to volitional failure in an attempt to standardise
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effort, intensity of effort was not controlled in the study by Nitzsche et al. (2016) where
participants performed a fixed number of 10 repetitions. It has been argued that prescribing
an arbitrary number of reps at a relative load based on a percentage of the maximal load an
individual can lift (i.e., % of 1RM) limits comparisons within and between RT studies, since
individual differences in muscular endurance among the studied population are completely
disregarded [14]. Indeed, research has reported a great variability in the number of repetitions
that can be performed by different individuals at the same relative load [13], indicating a
different intensity of effort among them at the same loading intensity. Considering that
cardiovascular responses seem to rely on the effort exerted during RT [31], it could be difficult
to say whether differences between conditions in Nitzsche et al. (2016) can be attributed
exclusively to the different loads used, since heterogenous levels of effort may have blunted

the study’s findings.

Results of the present study are in contrast to the upheld belief that high loading intensity
increases AS. Of note, the ML exercise protocol promoted significantly greater increases in
cfPWV, Alx@75, and HR than HL. Specifically, the ML significantly increased cfPWV from BL
values at Post (from 6.4 + 0.3m/s to 7.3 = 0.4 m/s) and 15Post (6.8 + 0.4m/s). Regardless of
load, be it high (>80% 1RM), moderate (60-80% 1RM) or low (<60% 1RM), mixed effects on AS
have been reported in the literature following acute RT schemes [4, 5, 18]. Of note, this is the
first study investigating the independent effects of load on AS, while maintaining a set of RT
variables (e.g., intensity of effort, repetition and rest duration) constant between experimental
conditions. Importantly, standardisation of effort adopted in the current study allows for a
more appropriate investigation of other RT variables (i.e., load in this instance). This notion is
supported by previous meta-analyses examining the effects of single RT variables from a
strength/hypertrophy standpoint, as they have only included studies that performed to
volitional failure as a means of controlling intensity of effort [7, 32]. Since differences in AS and
pulse wave reflection parameters between different loading intensities are not yet fully
understood, some speculations can be made based on previous research examining
cardiovascular responses between various training loads while having a set of RT standardised
between conditions [11, 33]. Vale et al. (2018) reported that RT at high intensity of effort (i.e.,
both conditions reps were performed to volitional failure) with lighter loads and higher
number of repetitions resulted in greater sympathetic activation in hypertensive
postmenopausal women compared to heavier load — lower repetition RT protocol. Similarly,
Gjovaag et al. (2016) reported that a 20RM RT session resulted in higher blood-pressure in

young healthy adults than a 4RM RT when performed to volitional failure. In accordance,
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results of the present study indicated a significant greater increase in HR in the ML condition,
indicative of sympathetic activation, while cSBP and pSBP also increased to a greater degree
in the ML condition, although these changes were not significantly different from the HL.
Considering the strong associations between AS with blood pressure and sympathetic activity
[34, 35], it can be argued that additional, other than load, RT variables such as volume and

time under tension might be related to increased AS following RT [11].

Potential mechanisms that might also explain the differences in arterial responses between
loading intensities include improved vascular function, through increased nitric oxide (NO)
expression and endothelial progenitor cell (EPC) mobilization [36, 37]. Guzel et al. (2007)
reported that NO production was greater in healthy males following a high load (80-95% 1RM)
compared to a low load (20-35% 1RM) RT session. Elsewhere, Ribeiro et al. (2017) examined
the impact of acute RT at several loading intensities (i.e., 60%, 70% and 80% 1RM) on the
mobilisation of circulating EPCs, which may indicate improved endothelial function. The
authors reported a dose-response relationship, with the highest loading intensities promoting
the highest increases in EPCs both immediately and 6 hours after the RT session. Future
research is needed to confirm if these findings translate into improvement in AS following RT

and to solidify these hypotheses.

Data presented herein demonstrated that measures of pulse wave reflection were significantly
affected by the RT protocols. Changes in Alx and Alx@75 were significantly greater in ML than
HL. Specifically, Alx@75 significantly increased (from -5.1 + 3.2 t0 0.5 £ 7.6%) in ML and (from
-5.7 £+ 4.3 to -2.9 + 5.8%) after the HL session. Such findings are consistent with previous
research reporting increases in Alx@75 (from 4.4 £ 8.1 t0 23.0 + 11.7%) following acute RT [4].
Nonetheless, increases in Alx@75 have also been observed in time-matched to RT sedentary
controls [38] or following acute aerobic and HIT training [39], despite being well
acknowledged that aerobic and HITT interventions reduce AS [40]. Along this line, it can be
speculated that such effects may represent a physiological stress response that may not
necessarily translate to harmful long-term adaptations. That assumed, despite raising blood
pressure, it has been recently proposed that wave reflections attenuate increases in blood flow
that may protect against flow pulsatility to the microcirculation [41]. Yet, this is still speculative

so future studies are needed to validate this notion.

In the present study, cSBP significantly increased post-exercise. These findings are in
agreement with some [38, 42] but not all previous studies [4, 43]. In addition, the current data

did not show any changes in pSBP in any time point for both conditions, supporting previous
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assumptions that cSBP responses occur independent of changes in pSBP and AS [44]. Of note,
cDBP significantly decreased immediately post-exercise. Exact causes of this decrease remain
unclear, as it is usually shown that that cDBP remains unchanged up to 10 minutes after acute
RT [4, 38], although significant decreases have also been reported [42]. A similar trend was
observed for SEVR which significantly decreased after both conditions throughout recovery.
Given that myocardial perfusion occurs mostly during diastole, it has been suggested that a
reduction in cDBP may result in a decrease in coronary blood flow [45]. Although previous
studies reporting decreases in SEVR values after acute RT [4, 38] have not observed any parallel
reductions in cDBP. Furthermore, since the extent of myocardial perfusion is primarily
determined by DPTI, which in turn is mediated by increases in HR, it should be noted that
increases in HR post-exercise were observed, and although significantly different from
baseline, these increases were moderate with mean values reaching at 75.5 £ 16 bpm. Given
the paucity of available data, future research is needed to elucidate potential relationships and
to ascertain whether these transient changes in cDBP and SEVR may represent harmful long-
term implications. Nevertheless, data from the current study indicate that RT performed at
higher loading intensities promote a more favourable effect on coronary haemodynamics,

potentially representing a safer RT approach especially for populations at risk.

Some limitations of the current study warrant consideration. It should be noted that volume
load (i.e., set x repetitions x weight lifted) of ML was twice that of HL. Although volume load
could have been equated between conditions, lighter loads inherently result in greater volume
load than heavier load RT protocols [46]. Thus, whilst scientifically valid, this approach would
have limited ecological validity and transfer to real training settings. For the same reason, the
Valsalva manoeuvre was not controlled in this study despite its association with AS [47], since
use of it may be unavoidable and often beneficial when lifting heavy loads or performing
repetitions close to momentary failure [48]. In addition, in the case of some participants the
specific repetition tempo prescribed could not be adopted during the final repetitions.
Nonetheless, repetition velocity is usually reduced as a set approaches the point of failure,
indicating the interdependence of RT variables [32]. Lastly, the current sample consisted of
both males and females, thus sex-related differences in vascular responses to RT might be a
confounding factor. Despite these limitations, the current study adequately controlled a set of
RT variables (i.e., intensity of effort, rest duration) to investigate the independent effects of
load on AS. In addition, the present study was structured as a within-subjects design thus
minimising inter-individual variability in physiological responses to RT[49].
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5. Conclusion

The current study suggests that performing RT to volitional failure using a moderate loading
intensity (12RM) promotes significantly greater increases in measures of AS and pulse wave
reflection in healthy individuals when compared to a high loading intensity 4RM. Collectively,
these data suggest that RT protocols with lower loads and higher repetitions impose a greater
workload on the arterial and cardiovascular system in comparison to RT schemes with heavier
loads and lower repetitions. Findings of the present study may have important implications for
the prescription of RT programs particularly from a cardiovascular-health point of view. Future
research should examine the potential implication of additional RT variables, such as intensity
of effort, under volume equated conditions, in an attempt to elucidate the independent and

synergistic effects of various RT variables on AS.
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543  Table 1 Participant characteristics

ML (12RM) HL (4RM)
Age (y) 36.4+6.8
Weight (kg) 67.31+12.0
Height (cm) 172.8+7.8
Dead Lift (kg) 56.6 + 15.0 76.8 £ 16.6
Bench Press (kg) 40.6 £10.9 52.4+15.8
Volume (Repetitions) 71.2+0.8 23.8+0.4
Volume load (kg) 3419.6 £ 884.8 1540.6 + 384.4

544

545 Note: DL: deadlift; BP: Bench press; ML: moderate load; HL: high load. Volume load is
546 calculated as : sets x repetitions x load. Data presented are mean + SD.

547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
17

This is an accepted manuscript of an article published by Wiley in The Journal of Clinical Hypertension, available online at
https://onlinelibrary.wiley.com/journal/17517176. It is not the copy of record. Copyright ©2025, The Authors.



https://onlinelibrary.wiley.com/journal/17517176

566  Table 2 Haemodynamic and cardiovascular variables at rest and during recovery from an

567  acute ML (12RM) and HL (4RM) resistance training protocol.

Time Point Interaction Effect
P for Interaction Effect
Baseline Post 15Post effect size (n%)
¢SBP (mmHg) §
ML 111.4+11.0 119.9+10.2 111.3+14
0.239 0.13
HL 112.7 £10.1 117.6+£14.9 115.7 £ 15.6
Total 112+9.9 118.7+9.9 113.5+13.6
cDBP (mmHg) §
ML 60.5+8.5 47.8+6.6 50.2+11.0
0.180 0.15
HL 60.3+8.6 56.6+12.5 56.8+11.7
Total 60.3+8 52.2+7.3 53.5+8.3
cfPWV (m/s)
ML 6.4+£0.3 7.3+05 69204
0.002 0.47
HL 6.6+0.5 6.8+0.3 6.6+0.2
Total 6.5+£0.3 7+0.3 6.7x0.3
cfPWV-adjusted (m/s)
ML 6.4+0.3 7303 6.9+0.3
HL 6.6+£0.3 6.7+0.3 6.6+0.3 <0.001
Total 6.5+£0.3 7+0.3 6.7+0.3
Alx (%)
ML 12.5+54 32.5+10.7 17.2+6.2
0.018 0.40
HL 14373 23+7.9 14.8 £ 8.9
Total 13.3+5.6 27.7%+7.6 16+7
AlX@75 (%) T.§
ML -5.1+3.3 0.6+7.7 -20+6.1
0.210 0.14
HL -5.7+4.3 -3.0+5.9 -4.3+4.7
Total -54+36 -1.1+6 -3.1%£5
AP (mmHg)
ML 6.5+3.2 23.5+9.6 11+7.3 0.004 0.42
18
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HL 7.5+3.9 142+6.2 9.5+7.5
Total 693 18.8+6.3 10.2+6.3
pSBP (mmHg)
ML 118.4+8.8 123.2+10.1 116.4 + 13
0.131 0.18
HL 119.5+8.9 121.3+14.1 122.8+12.7
Total 11898 122.2+9.3 1195+11.3
pDBP (mmHg) §
ML 60.5+8.5 47.8+6.6 50.2+11
0.130 0.18
HL 59.8+ 8.8 57.4+13.2 56.8+11.7
Total 60.1+8.3 52.5%7.6 53.5+8.3
HR (bpm) 1,§
ML 64.1+6.8 75.5+16.0 70.5+12.6
0.236 0.13
HL 62.8+9.0 68.4+12.2 65.8+9.7
Total 63.4+7.3 719129 68.1+10.6
MAP (mmHg)
ML 83+10.8 82.4+8.0 79.6 £10.3
0.782 0.02
HL 83.5+9.7 85.1+13.1 82.5+12.2
Total 83.2+9.9 83.7+8.6 81.1+10.3
SEVR (%) t,§
ML 160.6 + 18.8 128.5+26.9 131.1+36.2
0.058 0.24
HL 158.3+18.9 146.8 +27.5 138.8 +20.2
Total 159.4+17.2 137.6+26.5 134.9+26.2
568
569 Note: ML: moderate load; HL: high load; cSBP: central systolic blood pressure; cDBP: central
570 diastolic blood pressure; cfPWV: carotid-femoral pulse wave velocity; cfPWV-adjusted:
571 cfPWV adjusted for mean arterial pressure; Alx: augmentation index; AP: augmentation
572 pressure; pSBP: peripheral systolic blood pressure; pDBP: peripheral diastolic blood pressure;
573 cMAP: central mean arterial pressure; HR: heart rate; SEVR: subendocardial viability ratio;
574  Aix@75: augmentation index normalised at 75bmp; Total: means of main effect of time. Data
575 are displayed as means * SD; ¥ interaction main effect (p < 0.05), T condition main effect (p <
576  0.05), § time main effect (p < 0.05).
577
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